Depends on the distance being traveled by both ships. The Milky Way is 1000 light years deep, so there’s a lot of vertical room to maneuver. Mentioned locations at real star systems, like Wolf 359, are definitely not all on the same plane in any way. Possibly more relevant, though, is that ‘up’ isn’t really much of a thing. Star systems can (and do) have their axis tilted significantly off of the galactic axis, so even if you define ‘up’ within a star system and orient your ship that way, you may wind up tilted weird when you arrive at the next system due to it having a different ‘up’. You could define ‘up’ by the galactic axis, but that would still only apply to the one organization; there’s no reason for the UFP, Romulans, Klingons, Cardassians, and Dominion to all agree that one side of the galaxy is the top and the other is the bottom, but they do anyway. Humans couldn’t even agree on which way to orient maps of our own planet for centuries.
I can argue the metaphysics of 3rd or 3.5 edition D&D magic for aeons if you’d like. That was damn near the point of most of the sessions of a couple campaigns that I played in. We ended up deciding that a level 1 Cleric, level 1 Wizard, and a level 5 engineer would be a damn near unstoppable force because the Engineer could tell the Cleric where to use a Summon Water cantrip, and tell the Wizard what form to hold the water in using the Shape Water cantrip.
We also ended up discussing the ramifications of a spell that could turn your target into a black hole. Here’s a hint, unless you have used at least the “Nailed to the Sky” Epic Spell, or what we developed, namely, “Nailed to the Star” as the first part of your spell, (this puts you in a stellarsynchronos orbit around the nearest star at a distance of 1,000,000 miles above the surface of the stars atmosphere. ≈2,000,000 KM.) you’re going to blow yourself, and a significant portion of the world around you to smithereens. Nailed to the Star allows one to use the magic to transport every bit of even a God, Elder God, or Titan to a single place as long as that place isn’t going to be a Prime Material for even the next turn, which they won’t. In a Gods case, they, their soul, their avatars, their “phylactery,” (aka magic items that could allow them to be resurrected) and anything else that could have ever been part of that being, are instantaneously teleported into a dimensional anchor. That dimensional anchor prevents magical or psionic beings from leaving with any teleport or plane shift like ability. As soon as ALL of the target has been shifted into a place that is almost guaranteed to be empty space, a wall of force that is spherical and 1,000 miles in diameter forms, and instantly collapses everything in it down below the Schwartzchild radius, creating a black hole that will explode in less than a second.
Needless to say, we ended that campaign with our party deciding who the next pantheon would be.
well, if they are all using the galactic plane, but have different standards, maybe we just didn’t know that they’re always showing klingon ships upside down.
Sure but there are star systems that are above and below the exact ecliptic of the galactic plane. We’re not on the ecliptic that’s why you can’t see the milky way as well in the southern hemisphere because we’re kind of below it.
If a ship was travelling from Sol to Arcturus it would travel up (relative to the galactic plane) because we’re slightly below it and it’s considerably above it. The galaxy is very thin compared to its width, but it’s still of thousands of light years high.
I thought of that. Ships would also be traveling great distances, and account for elevation enroute. It’s not like you’d get to the Enterprise then hang a hard up turn to meet their elevation. You’d travel at an angle.
If you were, say, across a solar system from a ship that fired a torpedo at you, you’d have that much more time to maneuver (or fire phasers) to destroy it. So for those maybe it’s really about effective range - you have to be pretty close to the target simply because they’d just step out of the way.
Also, I think it’s a reasonable possibility phasers would lose energy over distance. Otherwise, those missed shots would travel across the galaxy and blow up someone in the Gamma quadrant or something.
Don’t forget about orbital mechanics. For a rendez vous between two ships you need a lot of maneuvers in opposite directions, it’s not like shown in movies where the fly like airplanes. If two ships are close to each other they will likely be in different orientations and it would be a waste of energy to face each other since communications still happen at thens of thousands of kilometers of distance
I’m not following. Ships would travel along the galactic plane, therefore they’d generally be in the same orientation.
Depends on the distance being traveled by both ships. The Milky Way is 1000 light years deep, so there’s a lot of vertical room to maneuver. Mentioned locations at real star systems, like Wolf 359, are definitely not all on the same plane in any way. Possibly more relevant, though, is that ‘up’ isn’t really much of a thing. Star systems can (and do) have their axis tilted significantly off of the galactic axis, so even if you define ‘up’ within a star system and orient your ship that way, you may wind up tilted weird when you arrive at the next system due to it having a different ‘up’. You could define ‘up’ by the galactic axis, but that would still only apply to the one organization; there’s no reason for the UFP, Romulans, Klingons, Cardassians, and Dominion to all agree that one side of the galaxy is the top and the other is the bottom, but they do anyway. Humans couldn’t even agree on which way to orient maps of our own planet for centuries.
You guys keep this up and I might delete all my other subs.
Well the guy is wrong, we can’t just believe it.
I can argue the metaphysics of 3rd or 3.5 edition D&D magic for aeons if you’d like. That was damn near the point of most of the sessions of a couple campaigns that I played in. We ended up deciding that a level 1 Cleric, level 1 Wizard, and a level 5 engineer would be a damn near unstoppable force because the Engineer could tell the Cleric where to use a Summon Water cantrip, and tell the Wizard what form to hold the water in using the Shape Water cantrip.
We also ended up discussing the ramifications of a spell that could turn your target into a black hole. Here’s a hint, unless you have used at least the “Nailed to the Sky” Epic Spell, or what we developed, namely, “Nailed to the Star” as the first part of your spell, (this puts you in a stellarsynchronos orbit around the nearest star at a distance of 1,000,000 miles above the surface of the stars atmosphere. ≈2,000,000 KM.) you’re going to blow yourself, and a significant portion of the world around you to smithereens. Nailed to the Star allows one to use the magic to transport every bit of even a God, Elder God, or Titan to a single place as long as that place isn’t going to be a Prime Material for even the next turn, which they won’t. In a Gods case, they, their soul, their avatars, their “phylactery,” (aka magic items that could allow them to be resurrected) and anything else that could have ever been part of that being, are instantaneously teleported into a dimensional anchor. That dimensional anchor prevents magical or psionic beings from leaving with any teleport or plane shift like ability. As soon as ALL of the target has been shifted into a place that is almost guaranteed to be empty space, a wall of force that is spherical and 1,000 miles in diameter forms, and instantly collapses everything in it down below the Schwartzchild radius, creating a black hole that will explode in less than a second.
Needless to say, we ended that campaign with our party deciding who the next pantheon would be.
well, if they are all using the galactic plane, but have different standards, maybe we just didn’t know that they’re always showing klingon ships upside down.
Sure but there are star systems that are above and below the exact ecliptic of the galactic plane. We’re not on the ecliptic that’s why you can’t see the milky way as well in the southern hemisphere because we’re kind of below it.
If a ship was travelling from Sol to Arcturus it would travel up (relative to the galactic plane) because we’re slightly below it and it’s considerably above it. The galaxy is very thin compared to its width, but it’s still of thousands of light years high.
I thought of that. Ships would also be traveling great distances, and account for elevation enroute. It’s not like you’d get to the Enterprise then hang a hard up turn to meet their elevation. You’d travel at an angle.
I can travel the galactic plane with my spaceship oriented any of 360°. Straight is straight.
What I don’t understand is why they were even close enough for the image. If subspace comms are a thing, a solar system length may be just fine.
I don’t think I’ve ever seen combat in Star Trek that takes place over a distance of more than a couple of hundred kilometres.
What’s the range on a phaser or a torpedo, can it even go that far.
Long range weapons are so rare in Star Trek that when they do turn up they’re basically what the whole episode is about.
If you were, say, across a solar system from a ship that fired a torpedo at you, you’d have that much more time to maneuver (or fire phasers) to destroy it. So for those maybe it’s really about effective range - you have to be pretty close to the target simply because they’d just step out of the way.
Also, I think it’s a reasonable possibility phasers would lose energy over distance. Otherwise, those missed shots would travel across the galaxy and blow up someone in the Gamma quadrant or something.
Don’t forget about orbital mechanics. For a rendez vous between two ships you need a lot of maneuvers in opposite directions, it’s not like shown in movies where the fly like airplanes. If two ships are close to each other they will likely be in different orientations and it would be a waste of energy to face each other since communications still happen at thens of thousands of kilometers of distance
Bingo, ships travel in a specific way so their paths are more or less predictable.