This particular class of vulnerabilities, where modern processors try to predict what operations might come next and perform them before they’re actually needed, has been found in basically all modern CPUs/GPUs. Spectre/Meldown, Downfall, Retbleed, etc., are all a class of hardware vulnerabilities that can leak crypographic secrets. Patching them generally slows down performance considerably, because the actual hardware vulnerability can’t be fixed directly.
It’s not even the first one for the Apple M-series chips. PACMAN was a vulnerability in M1 chips.
Researchers will almost certainly continue to find these, in all major vendors’ CPUs.
The patch for meltdown results in a performance hit of between 2% and 20%. It’s hard to pin down an exact number because it varies both by CPU and use case.
This particular class of vulnerabilities, where modern processors try to predict what operations might come next and perform them before they’re actually needed, has been found in basically all modern CPUs/GPUs. Spectre/Meldown, Downfall, Retbleed, etc., are all a class of hardware vulnerabilities that can leak crypographic secrets. Patching them generally slows down performance considerably, because the actual hardware vulnerability can’t be fixed directly.
It’s not even the first one for the Apple M-series chips. PACMAN was a vulnerability in M1 chips.
Researchers will almost certainly continue to find these, in all major vendors’ CPUs.
How much slower is s CPU without this functionality built in?
The patch for meltdown results in a performance hit of between 2% and 20%. It’s hard to pin down an exact number because it varies both by CPU and use case.