• doggle@lemmy.dbzer0.com
    link
    fedilink
    arrow-up
    22
    arrow-down
    1
    ·
    1 year ago

    Isn’t basing a temperature scale on the freezing and boiling points of water a bit arbitrary in and of itself?

    The reason they are arbitrary numbers in Fahrenheit is because they weren’t considerations when the scale was made.

      • MystikIncarnate@lemmy.ca
        link
        fedilink
        English
        arrow-up
        14
        arrow-down
        3
        ·
        1 year ago

        Except that water boils at different temperatures when exposed to different amounts of pressure.

        So this works pretty universally on earth… Near the ground/ocean level (plus or minus a few hundred meters). Once you get outside of that specific condition the numbers move.

        So yes, fairly arbitrary.

        Let’s all switch to Kelvin.

        • SkyeStarfall@lemmy.blahaj.zone
          link
          fedilink
          arrow-up
          12
          ·
          1 year ago

          The nice thing about celcius and kelvin is that they’re the same scale, but celcius is just shifted 273.15 units. And it’s more intuitive for humans to work with smaller numbers with bigger relative differences. But yes, kelvin would be a lot better to work with, especially considering stuff like doubling temperature (doubling energy) would actually work correctly in kelvin.

          But if there’s one thing that makes a lot of sense to base temperature enough for human use, I would indeed say it’s water, because all life uses water, we are completely surrounded by it, and it’s super important to nearly everything we do too.

        • Deme@lemmy.world
          link
          fedilink
          arrow-up
          3
          ·
          1 year ago

          Sure, but the vast majority of people live in low lying areas and even then it doesn’t shift that drastically. You need to climb a mountain to see the difference when it comes to applications of daily life.

          Although now that I think about it. The same criticism applies to pretty much every definition of temperature that is based on the behaviour of matter. This also applies to Kelvin. Temperature is a property of matter and every type of matter behaves differently.

    • BluesF@lemmy.world
      link
      fedilink
      arrow-up
      9
      arrow-down
      1
      ·
      1 year ago

      It is, but if you look at how Farenheit was conceived it’s absurdly nonsensical. 0°F is the freezing temperature or some mixture of chemicals, and 90°F is a guess at human body temperature lmao.

      And the freezing/boiling points of water are arbitrary except in that they are used to actually define both scales. They provide easily measurable standards.

      • deegeese@sopuli.xyz
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        No, 0° was the lowest temperature recorded in the city Fahrenheit lived, and 100° was considered normal body temperature, with the quality of thermometer available at the time.

        It’s quite arbitrary, but ends up mapping pretty nicely to comfortable ranges for humans.

    • force@lemmy.world
      link
      fedilink
      arrow-up
      8
      arrow-down
      1
      ·
      edit-2
      1 year ago

      Well TECHNICALLY it’s not based on the state change of water.

      It’s based on the formula C = K - 273.15 where K = 1.380649×10^−23 / (6.62607015×10^−34)(9192631770) * h * Δν[Cs] / k where k is the Boltzmann constant (1.380649×10^−23 J * K^-1), h is the Planck constant, and Δν[Cs] is the hyperfine transition frequency of Caesium

      So even MORE abstract and unrelatable

      • ferralcat@monyet.cc
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        This makes no sense. K is not a constant. Is there a variable in there?

        Temperature is a measure of entropy. It depends on the disorder in a system somehow.

        • assassin_aragorn@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          1 year ago

          Temperature isn’t a measure of entropy, but the internal energy of a system. Internal energy is the total energy sum of kinetic and thermal and gravitational energy.

          You might wonder how that’s calculated, and the short answer? It isn’t. We rarely look at the actual value. This also goes for enthalpy and entropy. What matters most of the time is the difference in enthalpy/entropy/energy. If you take a look at various enthalpy numbers across textbooks and software and steam tables, you’ll see the value vary significantly depending on what they use as their 0 point. No matter where the scale starts though, the difference between two distinct points will remain the same.

    • blueson@feddit.nu
      link
      fedilink
      arrow-up
      3
      arrow-down
      1
      ·
      edit-2
      1 year ago

      If you want to be radical, use Kelvin. At least it scaled identical to C so it’s easy to comprehend.

    • barsoap@lemm.ee
      link
      fedilink
      arrow-up
      2
      ·
      edit-2
      1 year ago

      Every scale and unit is, ultimately, arbitrary. We all do have a very good understanding of what freezing and boiling water is, though, we don’t have a good intuition of “coldest day in some random place in some random year” is. Then there’s a couple of other common points of orientation: 20C is room temperature, 37C body temperature and thus warm baths and “it’s too bloody hot outside” hover around that (you actually want wet-bulb temperature for that, but it’s still a point of orientation), another point is about 60C which is the hottest you can have a beverage and drink it without excessive slurping. Also a common temperature in cooking as that’s when a lot of stuff starts to denature, e.g. egg white is about 62-65C, the temperature you want to hit for carbonara to not get scrambled eggs.

      Practically everything we deal with in everyday life (short of winter weather) is within that 0-100 range. Which is due, to, well, water being liquid in that range.